Les volcans actifs.

Un volcan est une structure géologique qui résulte de la montée d’un magma puis de l’éruption de matériaux (gaz et lave) issus de ce magma, à la surface de la croûte terrestre ou d’un autre astre. Il peut être aérien ou sous-marin.

La Smithsonian Institution recense 1 432 volcans actifs dans le monde, dont une soixantaine en éruption chaque année. Mais cela ne tient pas compte de la plupart des volcans sous-marins qui ne sont pas accessibles à l’observation, qui sont plus nombreux. Un grand nombre a été mis en évidence ailleurs dans le système solaire.

500 à 600 millions de personnes vivent sous la menace d’une éruption. Environ dix pour cent des humains sont menacés par les activités volcaniques. Pour prévenir ce risque naturel, il faut comprendre la formation des volcans et le mécanisme des éruptions. C’est le sujet de la volcanologie. On peut dire vulcanologie.

Le magma provient de la fusion partielle du manteau et exceptionnellement de la croûte terrestre. L’éruption peut se manifester, de manière plus ou moins combinée, par des émissions de lave, par des émanations ou des explosions de gaz, par des projections de téphras, par des phénomènes hydromagmatiques, etc. Les laves refroidies et les retombées de téphras constituent des roches éruptives qui peuvent s’accumuler et atteindre des milliers de mètres d’épaisseur formant ainsi des montagnes ou des îles. Selon la nature des matériaux, le type d’éruption, la fréquence d’éruption et l’orogenèse, les volcans prennent des formes variées, la plus typique étant celle d’une montagne conique couronnée par un cratère ou une caldeira. La définition de ce qu’est un volcan a évolué au cours des derniers siècles en fonction de la connaissance que les géologues en avaient et de la représentation qu’ils pouvaient en donner.

Les volcans sont souvent des édifices complexes qui ont été construits par une succession d’éruptions et qui, dans la même période, ont été partiellement démolis par des phénomènes d’explosion, d’érosion ou d’effondrement. Il est ainsi fréquent d’observer diverses structures superposées ou emboîtées.

Au cours de l’histoire d’un volcan, les types d’éruptions peuvent varier, entre deux types opposés :

  • les éruptions effusives, avec des coulées de laves fluides, qui sont en général les moins dangereuses ;
  • les éruptions explosives, plus meurtrières.

Les bases de données scientifiques classifient le plus souvent les volcans par leur morphologie et/ou leur structure. La classification par type d’éruption reste difficile même si elle peut apparaître chez quelques auteurs français.


Selon que le magma provient de la fusion du manteau ou d’une partie de la lithosphère, il n’aura ni la même composition minérale, ni la même teneur en eau ou en gaz volcaniques, ni la même température. De plus, selon le type de terrain qu’il traverse pour remonter à la surface et la durée de son séjour dans la chambre magmatique, il va soit se charger soit se décharger en minéraux, en eau et/ou en gaz et va plus ou moins se refroidir. Pour toutes ces raisons, les tephras et les laves ne sont jamais exactement les mêmes d’un volcan à un autre, ni même parfois d’une éruption à une autre sur le même volcan, ni au cours d’une éruption, qui voit généralement la lave la plus transformée et donc la plus légère émise au début.

Les matériaux émis par les volcans sont généralement des roches composées de microlites noyés dans un verre volcanique. Dans le basalte, les minéraux les plus abondants sont la silice, les pyroxènes et les feldspaths alors que l’andésite est plus riche en silice et en feldspaths. La structure de la roche varie également : si les cristaux sont fréquemment petits et peu nombreux dans les basaltes, ils sont en revanche généralement plus grands et plus nombreux dans les andésites, signe que le magma est resté plus longtemps dans la chambre magmatique. 95 % des matériaux émis par les volcans sont des basaltes ou des andésites.

Le matériau le plus connu émis par les volcans est la lave sous forme de coulées. De type basaltique provenant de la fusion du manteau dans le cas d’un volcanisme de point chaud, de dorsale ou  de rift ou andésitique provenant de la fusion de la lithosphère dans le cas d’un volcanisme de subduction, plus rarement de type carbonatique, elles sont formées de laves fluides qui s’écoulent le long des flancs du volcan. La température de la lave est comprise entre 700 et 1 200 °C et les coulées peuvent atteindre des dizaines de kilomètres de longueur, une vitesse de cinquante kilomètres par heure et progresser dans des tunnels de lave. Elles peuvent avoir un aspect lisse et satiné, appelée alors « lave pāhoehoe » ou « lave cordée », ou un aspect rugueux et coupant, appelée alors « lave ʻaʻā ». Les coulées de ces laves, faisant parfois plusieurs mètres d’épaisseur, peuvent mettre des dizaines d’années à se refroidir totalement. Dans certains cas exceptionnels, de la lave en fusion peut remplir le cratère principal ou un cratère secondaire et former un lac de lave. La survie des lacs de lave résulte d’un équilibre entre apport de lave venant de la chambre magmatique et débordement à l’extérieur du cratère associé à un brassage permanent par des remontées de gaz volcaniques afin de limiter le durcissement de la lave. Ces lacs de lave ne naissent que lors d’éruptions hawaïennes, la grande fluidité de la lave permettant la formation et le maintien de ces phénomènes. Le Kīlauea à Hawaï et le Piton de la Fournaise à La Réunion sont deux volcans qui possèdent des lacs de lave lors de certaines de leurs éruptions. L’Erta Ale en Éthiopie et le mont Erebus en Antarctique sont parmi les seuls volcans au monde à posséder un lac de lave de manière quasi permanente. Lors de certaines éruptions de l’Erta Ale, son lac de lave se vide ou au contraire son niveau remonte jusqu’à déborder et former des coulées sur les pentes du volcan.

Généralement, ce magma remonte vers la surface en raison de sa densité plus faible et se stocke dans la lithosphère en formant une chambre magmatique. Dans cette chambre, il peut subir une cristallisation totale ou partielle et/ou un dégazage qui commence à le transformer en lave. Si la pression et la cohésion des terrains qui le recouvrent deviennent  insuffisantes pour le contenir, il remonte le long d’une cheminée volcanique (où la baisse de pression due à la remontée produit un dégazage qui diminue encore la densité de l’émulsion résultante) pour être émis sous forme de lave, c’est-à-dire totalement ou partiellement dégazé.

La présence d’eau dans le magma modifie significativement, voire complètement, le dynamisme volcanique et les propriétés rhéologiques des magmas. Elle abaisse notamment le seuil de mélange de près de 200 °C entre des magmas saturés en eau et son exsolution (formation de bulles lorsqu’il remonte vers la surface) entraîne une réduction significative des viscosités. Les magmas terrestres peuvent contenir jusqu’à 10 % de leur poids en eau (principalement dans leurs minéraux sous forme hydroxylée supercritique, du type amphibole) et il y a, selon les modèles, l’équivalent d’un à sept océans terrestres dans le manteau, si bien que les volcanologues parlent de plus en plus d’hydrovolcanisme et d’hydrovolcanologie.

Le plus souvent, les matériaux volcaniques sont composés de tephras ; ce sont les cendres volcaniques, les lapilli, les scories, les pierres ponces, les bombes volcaniques, les blocs rocheux ou basaltiques, les obsidiennes, etc. Il s’agit de magma et de morceaux de roche arrachés du volcan qui sont pulvérisés et projetés parfois jusqu’à des dizaines de kilomètres de hauteur dans l’atmosphère. Les plus petits étant les cendres, il leur arrive de faire le tour de la Terre, portées par les vents dominants. Les bombes volcaniques, les éjectas les plus gros, peuvent avoir la taille d’une maison et retombent en général à proximité du volcan. Lorsque les bombes volcaniques sont éjectées alors qu’elles sont encore en fusion, elles peuvent prendre une forme en fuseau lors de leur trajet dans l’atmosphère, en bouse de vache lors de leur impact au sol ou en croûte de pain en présence d’eau16. Les lapilli, qui ressemblent à de petits cailloux, peuvent s’accumuler en épaisses couches et former ainsi la pouzzolane. Les pierres ponces, véritable mousse de lave, sont si légères et contiennent tellement d’air qu’elles peuvent flotter sur l’eau. Enfin quand de fines gouttes de laves sont éjectées et portées par les vents, elles peuvent s’étirer en de longs filaments appelés « cheveux de Pélé ».

La « naissance » d’un volcan correspond à sa première éruption volcanique qui le fait sortir de la lithosphère. La naissance d’un nouveau volcan est un phénomène qui se produit plusieurs fois par siècle. Il a pu être observé en 1943 avec le Paricutín : une fracture laissant s’échapper des gaz volcaniques et de la lave dans un champ a donné naissance à un volcan de 460 mètres de haut en neuf mois. En 1963, le volcan sous-marin de Surtsey émergea au sud de l’Islande formant ainsi une nouvelle île et un nouveau volcan terrestre.

Il n’y a pas de consensus chez les volcanologues quant à la définition de l’activité d’un volcan.

Un volcan est qualifié d’éteint lorsque sa dernière éruption remonte à plus de 10 000 ans, d’endormi lorsqu’il a connu sa dernière éruption entre 10 000 ans et il y a quelques centaines d’années et d’actif lorsque sa dernière éruption remonte à quelques décennies au maximum.

De manière générale, les volcans subissent plusieurs éruptions au cours de leur vie. Mais leur fréquence est très variable selon le volcan : certains ne connaissent qu’une éruption en plusieurs centaines de milliers d’années comme le supervolcan de Yellowstone, tandis que d’autres sont en éruption permanente comme le Stromboli en Italie ou le Merapi en Indonésie.

Il arrive que des volcans ne se forment qu’en une seule éruption. Il s’agit de volcans monogéniques. Les volcans de la Chaîne des Puys dans le Massif central se sont formés entre 11500 av. J.-C. et 5000 av. J.-C. au cours d’une seule éruption pour chaque édifice volcanique et n’ont plus jamais montré de signe d’activité.

La fréquence des éruptions permet d’évaluer l’aléa, c’est-à-dire la  probabilité qu’une zone puisse subir une des manifestations d’une éruption. Cet aléa, combiné avec le type de manifestation volcanique et la présence de populations et sa vulnérabilité, permet d’évaluer le risque volcanique.

Une éruption volcanique survient lorsque la chambre magmatique sous le volcan est mise sous pression avec l’arrivée de magma venant du manteau. Elle peut alors éjecter plus ou moins de gaz volcaniques qu’elle contenait selon son remplissage en magma. La mise sous pression est accompagnée d’un gonflement du volcan et de séismes très superficiels localisés sous le volcan, signes que la chambre magmatique se déforme. Le magma remonte généralement par la cheminée principale et subit en même temps un dégazage ce qui provoque un trémor, c’est-à-dire une vibration constante et très légère du sol. Ceci est dû à des petits séismes dont les foyers sont concentrés le long de la cheminée.

Au moment où la lave atteint l’air libre, selon le type de magma, elle s’écoule sur les flancs du volcan ou s’accumule au lieu d’émission, formant un bouchon de lave qui peut donner des nuées ardentes et/ou des panaches volcaniques lorsque celui-ci explose. Selon la puissance de l’éruption, la morphologie du terrain, la proximité de la mer, etc il peut survenir d’autres phénomènes accompagnant l’éruption : séismes importants, glissements de terrain, tsunamis, etc.

La présence éventuelle d’eau sous forme solide comme une calotte glaciaire, un glacier, de la neige ou liquide comme un lac de cratère, une nappe phréatique, un cours d’eau, une mer ou un océan va provoquer au contact des matériaux ignés tels que le magma, la lave ou les tephras leur explosion ou augmenter leur pouvoir explosif. En fragmentant les matériaux et en augmentant brutalement de volume en se transformant en vapeur, l’eau agit comme un multiplicateur du pouvoir explosif d’une éruption volcanique qui sera alors qualifiée de phréatique ou de phréato- magmatique. La fonte de glace ou de neige par la chaleur du magma peut également provoquer des lahars lorsque l’eau entraîne des tephras ou des jökulhlaups comme ce fut le cas pour le Grímsvötn en 1996.

L’éruption se termine lorsque la lave n’est plus émise. Les coulées de lave, cessant d’être alimentées, s’immobilisent et commencent à se refroidir et les cendres, refroidies dans l’atmosphère, retombent à la surface du sol. Mais les changements dans la nature des terrains par le recouvrement des sols par la lave et les tephras parfois sur des dizaines de mètres d’épaisseur peuvent créer des phénomènes destructeurs et meurtriers. Ainsi les cendres tombées sur des cultures les détruisent et stérilisent la terre pour quelques mois à quelques années, une coulée de lave bloquant une vallée peut créer un lac qui noiera des régions habitées ou cultivées, des pluies tombant sur les cendres peuvent les emporter dans les rivières et créer des lahars, etc.

Une éruption volcanique peut durer de quelques heures à plusieurs années et éjecter des volumes de magma de plusieurs centaines de kilomètres cubes. La durée moyenne d’une éruption est d’un mois et demi mais de nombreuses ne durent qu’une journée. Le record absolu est celui du Stromboli qui est quasiment en éruption depuis environ 2 400 ans.

Le volcanisme est né en même temps que la Terre, lors de la phase d’accrétion de sa formation il y a 4,6 milliards d’années. À partir d’une certaine masse, les matériaux au centre de la Terre subissent d’importantes pressions, créant ainsi de la chaleur. Cette chaleur, accentuée par la dégradation des éléments radioactifs, provoque la fusion de la Terre qui dissipe vingt fois plus de chaleur qu’aujourd’hui. Après quelques millions d’années, une pellicule solide se forme à la surface de la Terre. Elle est déchirée en de nombreux endroits par des flots de lave et par de grandes masses granitoïdes qui donneront les futurs continents. Par la suite, les plaques lithosphériques nouvellement créées se déchireront préférentiellement à des endroits précis où se formeront les volcans. Pendant cent millions d’années, les volcans rejetteront dans la maigre atmosphère de l’époque de grandes quantités de gaz : diazote, dioxyde de carbone, vapeur d’eau, oxyde de soufre, acide chlorhydrique, acide fluorhydrique, etc. Il y a 4,2 milliards d’années, malgré les 375 °C et la pression 260 fois supérieure à celle d’aujourd’hui, la vapeur d’eau se condense et donne naissance aux océans.

Le rôle de la formation des premières molécules organiques et de l’apparition de la vie sur Terre peut être imputé aux volcans. En effet, les sources chaudes sous-marines ou les solfatares et autres geysers offrent des conditions propices à l’apparition de la vie : de l’eau qui a lessivé des molécules carbonées, des minéraux, de la chaleur et de l’énergie. Une fois la vie répandue et diversifiée à la surface de la Terre, les volcans auraient pu provoquer à l’inverse de grandes extinctions : l’âge des grandes extinctions du vivant coïncide avec l’âge des trapps. Ces trapps auraient pu être provoqués par la chute de météorites ou l’éruption exceptionnelle de points chauds. Les effets combinés des gaz volcaniques et particules dispersés dans l’atmosphère auraient provoqué la disparition de nombreuses espèces par un hiver volcanique suivi d’une hausse de l’effet de serre par les  changements dans la composition gazeuse de l’atmosphère.

Une des théories les plus acceptées pour l’apparition de l’homme serait l’ouverture du rift africain : uniformément humide au niveau de l’équateur, le climat africain se serait asséché à l’est du rift qui arrête les nuages venant de l’Ouest. Les hominidés, s’adaptant à leur nouveau milieu formé d’une savane, auraient développé la bipédie pour échapper à leurs prédateurs.

Encore de nos jours, les volcans participent à l’évacuation de la chaleur interne de la Terre et au cycle biogéochimique mondial en libérant les gaz, la vapeur d’eau et les minéraux engloutis dans le manteau au niveau des fosses de subduction.

Les volcans sous-marins sont les plus nombreux sur Terre. On estime que 75 % des volcans et des matériaux ignés émis par les volcans le sont au niveau des dorsales océaniques. Les volcans faille se trouvent en grande majorité le long des dorsales océaniques où ils émettent des laves fluides. Ces laves, soumises aux eaux froides comprises entre un et deux degré Celsius et à la forte pression, prennent la forme de boules : ce sont les « pillow lavas ».

Les autres volcans situés le long des fosses de subduction et ceux formés par un point chaud donnent naissance à une montagne sous-marine à sommet plat et à pente très raide : un guyot. Lorsqu’un volcan sous-marin parvient à atteindre la surface, il émerge dans une éruption de type surtseyenne. Deux volcans sous-marins sont célèbres et surveillés : le Lōʻihi qui sera le prochain volcan d’Hawaï à émerger de l’océan Pacifique et le Kick-’em-Jenny au nord de l’île de la Grenade dans les Antilles et qui est très proche de la surface et a une activité explosive.

Le massif Tamu est un volcan bouclier sous-marin considéré comme le plus vaste volcan de la Terre et l’un des plus grands du système solaire.

La Terre n’est pas la seule planète du Système solaire à connaître une activité volcanique.

Vénus connaît un intense volcanisme avec 500 000 édifices volcaniques, Mars comporte l’Olympus Mons, un volcan considéré comme éteint et haut de 22,5 kilomètres faisant de lui le plus haut sommet du Système solaire, la Lune est couverte par les « maria lunaires », d’immenses champs de basalte.

Des volcans existent aussi sur des satellites de Jupiter et de Neptune, notamment Io et Triton. La sonde Voyager 1 a permis de photographier en mars 1979 une éruption sur Io, tandis que Voyager 2 a fait découvrir sur Triton en août 1989 des traces de cryovolcanisme et des geysers. Encelade, satellite de Saturne, est le siège de cryovolcans (voir l’article Encelade, section Cryovolcanisme). La composition chimique variant considérablement entre les planètes et les satellites, le type d’éjecta est très différent de ceux émis sur Terre tel du soufre, de la glace d’azote, etc.

Source : Wikipédia.

Laisser un commentaire

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur comment les données de vos commentaires sont utilisées.