Le Programme Viking.

Le programme Viking est un programme spatial de la NASA qui a posé les premiers engins américains sur le sol martien. Dans le cadre de ce programme, deux sondes spatiales identiques, Viking 1 et Viking 2, ont été lancées en 1975 par une fusée Titan / Centaur à un mois d’intervalle. Chacune de ces missions comprenait un engin destiné à se placer en orbite autour de la planète et un module qui devait se poser sur le sol et mener des investigations en restant fixe. Les objectifs scientifiques étaient de réaliser des images à haute résolution de la surface de la planète permettant d’identifier les principales structures géologiques présentes en surface, de déterminer la structure et la composition du sol de l’atmosphère et d’identifier la présence éventuelle de la vie sur Mars.

Le programme Viking se substitue au programme Voyager Mars qui avait été planifié par la NASA dans le cadre du programme Apollo avant d’être abandonné. Au moment du lancement des sondes spatiales Viking, l’étude scientifique de Mars est peu avancée. Les orbiteurs et atterrisseurs composant le programme Viking fonctionnent durant 1 à 6 ans et permettent de dresser un premier portrait exhaustif de la planète : composition du sol et de l’atmosphère, climat, cartographie de l’ensemble de la surface. De nombreuses formations géologiques façonnées par l’action de l’eau sont découvertes. Par contre, malgré l’emport d’instruments d’analyse sophistiqués, les missions n’ont pas permis de déterminer si des formes de vie étaient présentes dans le sol martien. Le programme Viking reste à ce jour la plus ambitieuse et la plus coûteuse des missions envoyées vers Mars avec un budget de 3,8 milliards US$ (actualisé à 2014).

Depuis l’invention du télescope, Mars intrigue les scientifiques comme le grand public. Les premières observations télescopiques révélèrent des changements de couleur à sa surface, faisant penser à de la végétation qui évoluerait selon les saisons. De même, Giovanni Schiaparelli croit voir en 1877 des canaux suggérant l’existence d’une vie intelligente. À la fin des années 1950, peu avant que les premières sondes spatiales vers Mars ne soient lancées, les connaissances sur Mars découlent des observations effectuées avec les télescopes terrestres qui ne permettent pas de distinguer des détails inférieurs à 100 km. Les images fournies par ces instruments montrent une planète rougeâtre comportant des structures au sol de grande taille alternativement claires et sombres et deux calottes polaires dont la taille varie au cours de l’année. Les scientifiques considèrent généralement que ces dernières sont constituées de glace d’eau. Ils émettent l’hypothèse que la planète dispose d’une atmosphère car à certaines périodes de l’année, les détails de la surface s’estompent et on observe des nuages de couleur blanche ou jaune. Enfin, certains observateurs estiment qu’une végétation fruste (lichens) subsiste peut-être à la surface de la planète ce qui expliquerait les variations de teinte observées selon les saisons. Les estimations de pression atmosphérique sont largement au-dessus de la réalité et les températures avancées (de 10 à 25 °C à l’équateur dans une étude réalisée dans les années 1920) sont également fortement surévaluées.

Dès le début de l’ère spatiale Mars est l’un des enjeux de la course à l’espace, affrontement pacifique entre les États-Unis et l’Union soviétique à l’époque de la guerre froide. Les deux pays sont motivés par les spéculations sur la présence de vie sur Mars et le fait qu’il s’agit d’une destination relativement proche, ce qui permet d’y envoyer relativement facilement des engins spatiaux. Les soviétiques se lancent dans l’exploration spatiale de Mars dès octobre 1960, trois ans seulement après le lancement réussi du premier satellite artificiel Spoutnik 1. Mais durant quatre ans, ils ne cesseront d’essuyer des échecs. L’URSS parvient la première à poser sur le sol de la planète l’atterrisseur Mars 3 (1971), mais celui-ci ne survit que vingt secondes.

L’agence spatiale américaine, la NASA, qui ne dispose pas à ses débuts de lanceurs suffisamment puissants, ne lance ses premières missions vers Mars que quatre ans plus tard avec le programme Mariner développé par le Jet Propulsion Laboratory. Ces premières tentatives américaines sont couronnées de succès avec les toutes premières images de la planète rouge envoyées en juillet 1965 par Mariner 4. Les 22 photos d’une qualité moyenne qui sont prises par cette sonde spatiale révèlent un paysage de type lunaire couvert de cratères d’impact qui d’après leur aspect remontent à une période comprise entre deux et quatre milliards d’années. En apparence la planète ne connaît et n’a connu aucun phénomène d’érosion qui trahisse la présence d’eau. La partie photographiée ne présente par ailleurs aucun relief, montagne ou vallée. Cette vision déprimante met fin aux spéculations d’une Mars planète jumelle de la Terre popularisée par des auteurs de fiction comme Edgar Rice Burroughs et H.G. Wells. La pression atmosphérique mesurée est tellement faible (4,1 à 7,0 millibars, soit 0,5 % de celle de la Terre) que les scientifiques émettent l’hypothèse que les calottes polaires ne sont pas couvertes de glace d’eau mais de dioxyde de carbone. La température de surface mesurée, −100 °C, est également beaucoup plus basse que prévu. Enfin, aucun champ magnétique n’est détecté alors que l’existence de celui-ci est une condition indispensable pour permettre à des êtres vivants de survivre en surface.

Pour le Jet Propulsion Laboratory (JPL), concepteur du programme Mariner, celui-ci ne constituait qu’une étape intermédiaire avant la conception de sondes spatiales plus sophistiquées capables de se poser sur le sol de Mars et de Vénus. Selon les plans très ambitieux du JPL, les sondes spatiales de la génération suivante devaient emporter une charge utile scientifique de 230 kilogrammes (contre environ 20 kilogrammes pour les premières sondes spatiales Mariner) et combiner un module devant se poser sur le sol des planètes Mars et Venus et un module qui devait se placer en orbite pour servir de relais de télécommunications. Le lancement de la première de ces nouvelles sondes spatiales, baptisées Voyager, était prévue dès 1966. Alors que les sondes spatiales Mariner étaient développées en interne par le JPL, la direction de la NASA avait demandé à son établissement de confier la construction des sondes spatiales à des industriels. En avril 1963 une étude sur le sujet est confiée d’une part à la division des missiles et engins spatiaux de General Electric et d’autre part à la société Avco. Deux configurations sont envisagées pour les sondes spatiales à destination de Mars : un engin spatial de 2,7 à 3,15 tonnes placé en orbite par une fusée Saturn IB et un engin de 1,8 tonnes lancée par une fusée Titan III. Les deux industriels proposent un orbiteur équipé de panneaux solaires et un atterrisseur encapsulé dans une bouclier thermique de forme conique pour la phase de rentrée atmosphérique et alimenté en énergie par des générateurs thermoélectriques à radioisotope. Les deux industriels envisagent comme site d’atterrissage Syrtis Major qui avait attiré l’attention des astronomes du fait des changements de luminosité attribués par certains au cycle d’une végétation martienne jusqu’au survol de Mars par Mariner 4 en 1965.

La programme Mars Voyager subit coup sur coup deux revers en 1964/1965. Fin 1964 le lancement des missions est repoussé de 1969 à 1971. En juillet 1965 Mariner survole Mars et ses instruments démontrent que le densité de l’atmosphère martienne est beaucoup plus faible que prévue ce qui impose de revoir la conception de l’atterrisseur et d’avoir recours à un lanceur Saturn V pour le lancement de la mission. L’utilisation de cette fusée repousse le lancement de la mission en 1973. La sonde spatiale dans sa nouvelle configuration a une masse de 12 tonnes dont 6,5 tonnes d’ergols. Le cout de la mission atteint désormais un milliard de US$. En janvier 1967 la responsabilité du projet est transférée du JPL au centre de vol spatial Marshall. Le Congrès américain qui doit faire face au coût de la guerre du Vietnam (2 milliards US$ par mois) décide en 1967 de réduire le budget alloué à certains programmes de la NASA. Le programme Voyager Mars est annulé.

A la suite de l’annulation du programme Voyager Mars, la NASA convoque en septembre 1967 tous ses établissements impliqués dans ce projet pour en faire le bilan. La conclusion est que l’annulation du projet n’est pas due à l’absence d’intérêt pour une mission à destination de la surface de Mars mais à la croissance continue du coût du projet. Quelques mois plus tard, constatant que son programme d’exploration robotique de la Lune (Programme Surveyor,…) est sur le déclin et qu’aucune mission d’exploration du système solaire n’est programmée au delà de 1969, l’agence spatiale américaine lance un appel à propositions qui permet de réactiver le projet de mission martienne. Le centre de la NASA de Langley, à Hampton en Virginie dans le cadre du programme Apollo avait la supervision des missions de reconnaissance de la surface de la Lune et était responsable de la dynamique du vaisseau de rentrée atmosphérique. A ce titre le centre avait mené une étude sur un engin spatial effectuant un atterrissage “dur” à la surface de Mars.

Le projet martien est réactivé en décembre 1968 avec comme objectif le lancement d’une première mission profitant de la fenêtre de lancement de 1971 particulièrement favorable. Le JPL est chargé de développer l’orbiteur Mariner lancé cette année là dont l’objectif est d’identifier les sites d’atterrissage favorables. L’établissement de Langley est quant à lui retenu, au titre de son expertise, pour développer le véhicule devant se poser à la surface de Mars. Il est responsable de la gestion globale du projet. Cette dernière mission est baptisée Viking. La masse de l’orbiteur et de l’atterrisseur excédant les capacités du lanceur Atlas/Centaur, la NASA sélectionne la fusée Titan III pour le lancement de la sonde spatiale.

Contrairement au JPL qui avait pour habitude de confier à ses équipes la construction des engins spatiaux, le centre Langley sous-traitait le développement des engins spatiaux placés sous sa responsabilité. Aussi plusieurs sociétés sont consultées pour la réalisation de l’atterrisseur. Différentes architectures sont proposées par ces entreprises : train d’atterrissage comprenant trois ou quatre pieds, énergie fournie par des panneaux solaires ou des générateurs thermoélectriques à radioisotope (RTG). Le développement est confié en mai 1969 à l’établissement de Denver (Colorado) de la société Martin Marietta Aerospace qui propose un engin alimenté par des RTG et avec un train d’atterrissage à trois pieds (solution retenue pour les atterrisseurs lunaires du programme Surveyor) pour un montant de 280 millions de dollars Le JPL est quant à lui responsable de l’orbiteur, du module de navigation jusqu’à Mars, de l’acquisition des données et de la gestion de la mission à compter de son départ vers la planète rouge. L’adaptation du lanceur sera confiée au centre de recherche Lewis de la NASA, à Cleveland dans l’Ohio.

Quand il est soumis au vote du Congrès américain en mars 1969, le budget alloué au programme Viking est estimé à 364,1 millions de dollars mais très rapidement les couts s’envolent. En août de la même année il est estimé à 606 millions US$ en 1969 alors que le budget de la NASA se contracte à la suite du premier atterrissage réussi d’un équipage à la surface de la Lune (mission Apollo 11). Pour faire face à la diminution des moyens financiers disponibles, la NASA repousse la lancement de la mission Viking à 1975. Cette fenêtre de lancement moins favorable impose l’emport par la sonde spatiale d’une plus grande quantité d’ergols et donc le recours à une version du lanceur Titan III plus puissante. Ce report sera en définitive le bienvenu car il donnera le temps à l’agence spatiale de mettre au point l’atterrisseur. Le coût total du projet Viking sera d’environ 915 millions de dollars américains soit 3,8 milliards US$ (actualisé à 2014), le plus gros budget alloué à un programme d’exploration du système solaire jusqu’à la décennie 2020.

En novembre 1968 la NASA annonce le lancement programmé en 1971 de deux sondes spatiales identiques, Mariner 8 et Mariner 9, qui, contrairement aux missions ayant jusque là uniquement survolé Mars, doivent se placer en orbite autour de la planète et permettre ainsi une étude détaillée de sa surface et de son atmosphère. Mariner 8 est perdu au lancement à la suite d’une défaillance du système de guidage de l’étage Centaur mais la mise en orbite de Mariner 9 se déroule de manière nominale le 30 mai 1971. La sonde spatiale s’insère en orbite autour de Mars le 14 mars 1971. La sonde spatiale américaine devient ainsi le premier engin à se placer en orbite autour d’une planète autre que la Terre. Deux sondes soviétiques, Mars 2 et Mars 3, se placent également en orbite plusieurs jours plus tard. Les trois sondes spatiales se trouvent toutefois confrontées à un phénomène non prévu : une tempête de poussière empêche toute observation de la surface de Mars. Les sondes soviétiques, à la programmation rigide, utilisent toute la pellicule photo disponible, à photographier une planète uniformément grise. Elles larguent également des petites capsules destinées à effectuer un atterrissage dur à une vitesse de 60 kilomètres à l’heure. Seule la capsule de Mars 3 arrive au sol intacte mais elle ne survit que 20 secondes à l’atterrissage et ne transmet aucune donnée exploitable. Le fonctionnement de la sonde spatiale Mariner 9, contrairement à celui des sondes soviétiques, peut être modifié par le centre de contrôle et la collecte des données n’est déclenchée que lorsque l’atmosphère de Mars s’éclaircit avant de devenir complètement limpide en mars 1972.

La mission Mariner 9 qui s’achève fin octobre 1972, est un succès éclatant. L’ensemble de la surface de la planète est photographiée dont certaines régions avec une résolution spatiale de 100 mètres. Mais surtout, alors que les missions précédentes avaient donné l’image d’une planète stérile d’apparence lunaire, Mariner 9 révèle une planète Mars à la topographie complexe et en partie façonnée dans le passé par l’eau. Les photos prises par la sonde spatiale mettent en évidence des réseaux de vallées et des chenaux d’inondation qui démontrent que Mars a été par le passé suffisamment chaude pour que de l’eau à l’état liquide circule à sa surface. Ces formations relancent l’intérêt des scientifiques comme du grand public. La quête d’une vie résiduelle à la surface de Mars est désormais intégrée aux objectifs des missions martiennes de la NASA et se traduit par le développement d’un instrument complexe embarqué sur les sondes Viking destiné à détecter une activité biologique dans le sol. Mariner 9 photographie le volcan géant Olympus Mons, le dôme de Tharsis avec ses trois volcans boucliers, l’immense canyon de Valles Marineris (nommé en l’honneur de la sonde spatiale), les strates des calottes polaires et démontre l’intense érosion éolienne ainsi que des traces d’une activité tectonique. Ces photos révèlent l’étonnante dichotomie entre un hémisphère sud occupé par des hauts plateaux et un hémisphère nord couvert de plaines.

Pour l’atterrissage à la surface de Mars, la NASA a choisi une architecture plus complexe que celle adoptée par les missions équivalentes de l’Union soviétique. La sonde spatiale commence par se mettre en orbite autour de Mars et réalise une étude de la surface pour permettre l’identification par les ingénieurs de la NASA d’une zone d’atterrissage favorable à l’aide des photos prises par l’orbiteur. L’atterrisseur est ensuite largué et effectue un atterrissage en douceur contrairement aux engins soviétiques qui prennent contact avec le sol à près de 60 kilomètres à l’heure. L’atterrisseur est conçu pour fonctionner au moins 90 jours (contre 3 jours pour les sondes soviétiques). L’orbiteur est dérivé de l’orbiteur Mariner 9 mais la quantité d’ergols est beaucoup plus importante car la masse à insérer en orbite martienne comprend l’atterrisseur. Par ailleurs les besoins en énergie augmentent ce qui nécessite l’allongement des panneaux solaires qui permettent de doubler la production électrique. Enfin le diamètre de l’antenne parabolique de l’orbiteur est également accru pour permettre le transfert d’un volume de données plus important. L’orbiteur emporte une caméra permettant de réaliser des images ayant une résolution spatiale de 35 mètres. Cette architecture complexifie de manière significative la conception de la sonde spatiale qui doit être placée en orbite par un nouveau lanceur Titan III E/Centaur. A la date du lancement le cout du programme atteint 1 milliard US$ (équivalent en 2007 à 3 milliards US$).

Grâce à un budget disponible particulièrement conséquent, un important travail de recherche appliquée est réalisé pour mettre au point les techniques nécessaires pour l’atterrissage en douceur à la surface de la planète Mars. Avec son atmosphère 100 fois moins dense que la Terre et une gravité relativement importante par rapport à la Lune, la descente vers le sol martien est un exercice particulièrement difficile car la phase de freinage active (parachute ou système propulsif), ne peut intervenir que lorsque la vitesse du vaisseau a été suffisamment réduite par les forces de friction ce qui ne se produit qu’à une altitude relativement basse et laisse peu de temps pour les opérations de préparation de l’atterrissage. Les techniques développées pour la mission Viking, en particulier la phase de freinage par friction dans la haute atmosphère et à l’aide du parachute seront réutilisées par toutes les missions de la NASA à destination du sol martien au cours des deux décennies suivantes. Pour freiner de manière efficace le vaisseau qui pénètre à 4,7 km/s dans l’atmosphère martienne selon un angle de 17° par rapport à l’horizontale, la partie avant du véhicule de rentrée de 3,5 mètres de diamètre a la forme d’un cône faisant un angle de 70° qui est recouvert d’un revêtement ablatif (SLA-561) de 1,37 centimètre d’épaisseur. Un parachute de 16 mètres de diamètre est déployé à une altitude de 5,79 kilomètres alors que la vitesse est tombée à mach 1,1. Dans la phase finale de la descente, des moteurs-fusées à poussée modulable réduisent la vitesse verticale à 2,4 m/s et la vitesse horizontale à 1 m/s. Les sites d’atterrissage sélectionnés pour les missions Viking sont situés 2,5 kilomètres au-dessous du niveau moyen martien (équivalent du niveau de la mer sur Terre) ce qui permet de disposer de plus de temps pour se préparer à l’atterrissage. Les sondes Viking se posent sur un train d’atterrissage doté d’un système d’amortissement qui fournit une garde au sol de 20 centimètres. Malgré une sélection soigneuse des sites d’atterrissage, les ingénieurs découvriront que Viking 1 s’est posé à quelques mètres d’un rocher de 1 mètre de haut (Big Joe) qui aurait pu renverser l’atterrisseur.

La détection de la vie à la surface de Mars joue un rôle central dans le programme Viking. Presque 10 % du budget (soit 400 millions US$ 2014) est consacré à la mise au point d’instruments dont le rôle est de détecter d’éventuelles formes de vie martienne dans le sol martien (Expériences biologiques GEX/LR/PR, chromatographe / spectromètre de masse GC-MS). Compte tenu des données collectées par les missions spatiales précédentes sur la composition de l’atmosphère de Mars et sa surface, la communauté scientifique ne compte pas découvrir de formes de vie évoluées mais la plupart des scientifiques n’excluent pas la présence d’organismes analogues aux bactéries terrestres dont on connait les capacités d’adaptation aux environnements les plus extrêmes (température, pression, aridité, ensoleillement). L’exobiologie, la discipline scientifique qui a pour objectif d’étudier l’origine, la distribution et l’évolution de la vie dans l’Univers, est une science toute récente que la NASA contribue à fonder en créant un département d’exobiologie en son sein en 1960. La détection de la vie est un sujet complexe : le concept de vie lui-même est difficile à définir et ses manifestations peuvent être facilement confondues avec des processus purement chimiques. Dès 1959 des chercheurs commencent à travailler sur des instruments pouvant détecter la vie extraterrestre. 13 expériences différentes sont proposées à la NASA pour remplir ce rôle pour les missions Viking. Trois sont sélectionnées – Gas Exchange (GEX) de Vance Oyama, Labeled Release (LR) de Gilbert Levin, Pyrolytic Release (PR) de Norman Horowitz – tandis que l’expérience GC-MS est choisie pour confirmer les résultats obtenus. Avant même le lancement, la pertinence des instruments retenus fait l’objet de contestations chez les scientifiques. Les tests menés sur des échantillons terrestres aboutissent dans certains cas à des résultats divergents ou manifestement erronés.

La NASA doit tester le fonctionnement du nouveau lanceur Titan III E/Centaur que l’agence spatiale compte par ailleurs utiliser pour ses sondes spatiales à compter de l’entrée en service de la navette spatiale américaine. Le vol inaugural de la nouvelle fusée, qui a lieu le 11 février 1974 et simule la trajectoire des missions Viking, emporte une maquette de la sonde spatiale ainsi qu’un petit satellite scientifique. Le premier étage fonctionne de manière nominale mais l’étage Centaur ne s’allume pas. La charge utile retombe dans l’Atlantique. Toutefois le lancement réussi de la sonde spatiale Helios I qui a lieu le 10 décembre 1974 et utilise le même lanceur permet de qualifier la fusée.

Finalement les deux sondes spatiales Viking s’envolent vers Mars : le 20 août 1975 pour Viking 1 et le 9 septembre de la même année pour Viking 2. Après un voyage d’un peu moins d’un an, Viking 1 se place en orbite le 21 juin 1976, elle est rejointe par Viking 2 le 9 août sur son orbite. Les atterrisseurs se posent sur le sol martien le 20 juillet pour Viking 1 et le 3 septembre pour Viking 2. Viking 1 fonctionnera pendant plus de six ans, jusqu’au 13 novembre 1982. Viking 2 durera un peu moins longtemps, mais continuera tout de même de fonctionner pendant un peu moins de quatre ans, jusqu’au 11 avril 1980.

Le projet Viking consiste en un lancement de deux vaisseaux spatiaux vers Mars en vue de mener des expérimentations scientifiques. Les expériences biologiques étaient conçues pour détecter de la vie dans le sol martien. Les expériences étaient conçues par trois équipes différentes.

Chaque vaisseau était composé d’un orbiteur et d’un atterrisseur. Après s’être mis en orbite autour de Mars et avoir renvoyé les images permettant de sélectionner le site d’atterrissage, l’atterrisseur se séparait de l’orbiteur. L’atterrisseur entrait dans l’atmosphère martienne et se posait sur le site sélectionné. À ce stade de la mission, les deux objectifs scientifiques du programme Viking à remplir étaient :

  • pour l’orbiteur : cartographier le plus précisément possible la surface de Mars ;
  • pour l’atterrisseur : détecter une éventuelle présence de vie au stade élémentaire.

Les missions interplanétaires étaient à l’époque du programme Viking à leurs prémices. On avait certes posé des hommes sur la Lune, avec leurs équipements, mais de nombreuses missions automatisées avaient échoué. L’atterrisseur représentait l’élément principal de la mission. C’était autour de lui et de son fonctionnement qu’était architecturée toute la mission. Chaque étape de la mission pendant le voyage jouait un rôle dans l’arrivée à destination puis le fonctionnement du module parvenu à la surface. On peut schématiquement décomposer une mission Viking comme suit :

  • la préparation du vaisseau, et notamment sa stérilisation, puis son installation au sommet du lanceur sur le pas de tir ;
  • le transit entre la Terre et Mars avec les corrections de trajectoire ;
  • la mise en orbite autour de Mars ;
  • la sélection à l’aide des instruments de l’orbiteur d’un site d’atterrissage dépourvus d’obstacles trop importants (rochers de grande taille, accidents de terrain, pente) ;
    la modification de l’orbite de manière à larguer l’atterrisseur dans les conditions optimales ;
  • le largage de l’atterrisseur ;
  • la mise en route des expériences scientifiques et la transmission des données recueillies.

La sonde Viking avait été conçue pour réaliser une part importante de ces étapes de manière automatisée pour de nombreuses raisons : la première étant que les communications avec la Terre étaient difficiles sur la distance considérée. Il n’existait qu’une fenêtre de communication de 20 minutes half-duplex entre la Terre et Mars après la séparation de l’orbiteur et de l’atterrisseur et jusqu’à l’atterrissage. Toute la navigation depuis l’obtention d’une référence inertielle jusqu’à la localisation d’un point de référence sur la zone d’atterrissage devait donc être gérée par l’ordinateur de bord.

Une fois sur place, l’atterrisseur ne pouvait communiquer avec la Terre que durant la moitié de chaque jour martien. La puissance électrique disponible restreignait encore la durée des liaisons qui ne pouvaient finalement avoir lieu que pendant un très court laps de temps chaque jour. Il était possible au centre de contrôle de donner des instructions et reprogrammer le vaisseau sur Mars, mais finalement la majorité du contrôle des opérations fut réalisée de manière autonome, au jour le jour.

Sur les missions plus récentes, la phase de repérage réalisée par le module Viking en orbite n’est plus nécessaire. Ainsi, le programme Pathfinder n’en a pas eu besoin. Les modules d’atterrissage sont immédiatement mis sur une orbite leur permettant d’atterrir.

Viking 1 (Viking B avant son lancement) décolle à bord de la fusée Titan III-E / Centaur depuis la base de lancement de Cape Canaveral (Floride) le 20 août 1975. La sonde spatiale s’insère en orbite autour de Mars le 19 juin 1976 et est placée son orbite définitive le 21 juin : la sonde spatiale circule sur une orbite haute très elliptique de 1 513 x 33 000 kilomètres qu’elle parcourt en 24,66 heures. Viking 1 réalise des photos des zones d’atterrissage potentielles pour permettre la sélection du site le plus favorable. Le site qui avait la préférence des scientifiques était Ares Vallis car ce chenal d’inondation de Mars avait du par le passé être recouvert d’eau et avoir potentiellement abrité la vie. Mais les images prises par l’orbiteur montrent que le site, parsemé de petits cratères et de rochers de toute taille, est trop accidenté pour une tentative d’atterrissage. Le deuxième site préselectionné est tout aussi accidenté et finalement c’est un troisième site situé dans la région de Chryse Planitia qui est retenu. Il était prévu que la sonde spatiale se pose de manière symbolique le 4 juillet, jour de l’indépendance américaine, mais avec le retard pris dans la recherche d’un site acceptable, l’atterrisseur ne se détache de l’orbiteur que le 20 juillet. Toutefois par une heureuse coïncidence il s’agit de la date anniversaire des premiers pas de l’homme sur la Lune (Apollo 11). L’atterrisseur qui orbite à une vitesse de 4 km/s autour de Mars effectue la manœuvre de désorbitation à une altitude de 300 kilomètres. Parvenu à une altitude de 6 kilomètres et alors que sa vitesse de descente est encore de 250 m/s, le parachute est déployé. Parvenu à 1,5 km d’altitude (vitesse de 60 m/s) les moteurs-fusées sont mis à feu pour ralentir la sonde spatiale. Celle-ci atterrit avec une vitesse verticale résiduelle de 2,5 m/s à 11:53:06 UTC (16h13 en heure martienne), soit 3 heures après s’être séparé de l’orbiteur, dans la partie ouest de Chryse Planitia dans l’hémisphère nord. Viking devient le premier vaisseau à effectuer un atterrisseur en douceur à la surface de Mars et à transmettre une photo depuis celle-ci (la sonde soviétique Mars 3 qui a effectué un atterrissage à grande vitesse auparavant a cessé de fonctionné quelques secondes après son arrivée et n’a transmis aucune photo).

La deuxième photo transmise est un panoramique qui montre un paysage constellé de roches entourées d’une couche de poussière très fine qui forme parfois des dunes. A moins de 8 mètres de l’atterrisseur, un gros rocher haut de 1 mètre démontre que la sonde spatiale, dont la garde au sol n’est que de 22 centimètres, n’est pas passée loin de la catastrophe. Les premières photos en couleur arrivent le lendemain de l’atterrissage. Les couleurs sont manifestement déformées car le drapeau américain peint sur le pont supérieur de l’engin spatial et qui se trouve dans le champ de vue de la caméra est violet et jaune. Les couleurs doivent être retouchées et les scientifiques comme le public découvrent pour la première fois les teintes qui caractérisent Mars : le ciel de couleur caramel et le sol rouge brun. Au cours des jours suivants, les ingénieurs tentent de mettre en service le bras équipé de la pelle utilisée pour prélever les échantillons de sol mais découvrent qu’une goupille de sécurité est restée coincée. Il faudra cinq jours pour libérer le bras. Le 28 juillet un premier échantillon de sol est prélevé et vient alimenter le spectromètre à fluorescence XFRS, le spectromètre de masse et les instruments de détection de vie.

La mission primaire de l’orbiteur, qui s’achève au début d’une conjonction solaire le 5 novembre 1976, est prolongée. Le 12 février 1977, l’orbite de Viking 1 est modifiée pour permettre un survol de Phobos, la plus grande des deux lunes martiennes qu’elle survole à une distance de 90 km. Le périgée est abaissé à 300 kilomètres le 11 mars 1977. Il est remonté à 357 kilomètres le 20 juillet 1979. Le 7 aout 1980, les réserves d’azote, utilisées pour contrôler l’orientation, sont pratiquement épuisées ce qui met fin à la mission. L’orbite est relevée, passant à 320 x 56000 kilomètres, pour éviter que l’engin ne s’écrase sur Mars avant 2019 et empêcher ainsi une contamination de la surface de Mars par des micro-organismes terrestres. La sonde spatiale est mise en sommeil le 17 aout 1980 après avoir bouclée 1485 orbites.

La sonde spatiale Viking 2 (Viking A avant son lancement) est lancée le 9 septembre 1975 in extremis avant la fermeture de la fenêtre de lancement malgré des conditions météorologiques très défavorablesnote 9. L’équipement qui doit charger les batteries de l’atterrisseur tombe en panne le 21 octobre mais heureusement l’équipement de secours peut prendre le relais. La sonde spatiale atteint Mars le 7 aout 1976 après une navigation de 333 jours. La sonde spatiale réduit sa vitesse de 1100 m/s à l’aide de sa propulsion pour s’insérer sur une orbite de 1 500 x 33 000 km qu’elle parcourt en 24,6 heures. Son inclinaison orbitale de 55,2° (contre 38° pour Viking 1) lui permet de survoler les régions polaires. Au cours du mois suivant, l’orbiteur prend des photos qui sont utilisées pour sélectionner un site d’atterrissage au relief peu accidenté. Le premier site étudié, Alba Patera, se révèle trop accidenté et n’est pas sélectionné tout comme le site de rechange de Arcadia Planitia. Bien que situé à une latitude trop nordique pour être étudié par le radar de l’orbiteur chargé de détecter les accidents de terrain, le site du cratère Mie situé dans une grande plaine relativement plate et qui semble recouvert de dunes est retenu. Le 3 septembre 1976, après avoir abaissé son périgée à 3000 kilomètres, l’orbiteur largue l’atterrisseur. Mais 26 secondes après la séparation le système de contrôle d’attitude de l’orbiteur ne parvient plus à maintenir l’orientation et la liaison à haut débit avec la Terre qui passe par l’antenne parabolique, désormais dépointée, est interrompue. Heureusement les échanges se poursuivent à faible débit via l’antenne faible gain omnidirectionnelle ce qui permet de recevoir des informations confirmant le bon déroulement de la descente vers le sol et l’orientation de l’orbiteur est rétablie 9 heures plus tard. Le parachute est déployé à une altitude de 6 kilomètres alors que la vitesse de descente a été ramenée à 250 m/s. À une altitude 1,5 kilomètre, après largage du parachute, les moteurs-fusées sont mis à feu et réduisent cette vitesse à 2,4 m/s à l’atterrissage. L’engin vient se poser 200 kilomètres à l’ouest du cratère Mie dans la plaine de Utopia Planitia située dans l’hémisphère nord à une latitude de 47,67° deg et une longitude de 134,28° Est. À la suite d’une défaillance du radar ou d’une surface particulièrement réfléchissante, les propulseurs fonctionnent au moment de l’atterrissage 0,4 seconde plus longtemps que prévu ce qui crée des fissures dans le sol et soulève un nuage de poussière. Un des pieds reposant sur deux petits rochers, l’atterrisseur se retrouve incliné de 8,2°. Au grand soulagement du contrôle au sol, les télémesures transmises par l’engin démontrent qu’il est en bonne santé. La NASA vient de rééditer l’exploit de Viking 1. La caméra commence à prendre des photos immédiatement après l’atterrissage.

Le site d’atterrissage de Viking 2 se révèle très différent de celui de Viking 1. Le sol semble constitué d’une croute relativement solide avec beaucoup moins de poussières. il est parsemé de rochers plus gros et plus nombreux dont la surface est souvent parsemée de bulles à la manière des pierres ponces. À la grande déception des scientifiques, aucune dune n’est visible. La région environnante est complètement plate et aucun relief ne peut être distingué sur les photos prises par les caméras. Les instruments de Viking 1 chargés de détecter la vie ayant donné des résultats décevants, les scientifiques décident de modifier leur stratégie pour Viking 2. Ils décident de prélever des échantillons de sol situés sous des rochers et donc protégés du rayonnement ultraviolet du Soleil dont l’action stérilise le sol. Après plusieurs tentatives, la pelle parvient à déplacer un rocher de 3 kilogrammes. Mais l’analyse de l’échantillon prélevé ne donne aucun résultat concluant. L’atterrisseur fonctionnera durant 1 281 jours d’affilée et sera mis hors service le 11 avril 1980 à la suite d’une défaillance de ses batteries.

De son côté l’orbiteur mène une campagne d’observation des hautes latitudes grâce au relèvement de l’inclinaison orbitale qui est modifiée le 30 septembre 1976 pour atteindre 75°. Une conjonction solaire interrompt les communications jusqu’à mi-décembre Le 20 décembre l’inclinaison orbitale passe à 80° et le périgée est abaissée à 778 kilomètres. En octobre 1977 l’orbiteur de Viking 2 passe à seulement 22 kilomètres Déimos, la plus petite des deux lunes martiennes, et prend des images particulièrement spectaculaires de ce satellite. Durant son séjour en orbite l’orbiteur réalise plus de 16 000 images de Mars et ses satellites. Une fuite de l’azote utilisé pour contrôler l’orientation de l’orbiteur entraine la fin de la mission de l’orbiteur le 25 juillet 1978 qui aura parcouru 706 orbites.

Succédant à la mission Mariner 9 qui a mis en évidence que Mars était une planète plus complexe que ce que suggérait les premiers survols par des engins spatiaux, les missions Viking ont fourni des informations fondamentales sur Mars. Les instruments ont permis de détecter la présence d’azote dans l’atmosphère de Mars, une brique essentielle pour l’apparition de la vie. Ils ont effectué les premières mesures des isotopes du carbone, de l’oxygène, de l’azote et des gaz nobles dans cette atmosphère. Le ratio des isotopes de l’azote 15N/14N suggère que Mars a perdu 99% de la masse de son atmosphère d’origine. qui était beaucoup plus dense permettant d’expliquer la présence d’eau liquide à la surface suggérée par les chenaux découverts sur les photos de la surface prises par Mariner 9. Toutes ces découvertes coïncident avec un moment de l’histoire de l’humanité où celle-ci prend conscience que la Terre est une planète. Les résultats des missions Viking donnent le coup d’envoi à la planétologie comparée dont l’objectif est de comprendre l’évolution de l’habitabilité des planètes en essayant de décoder leurs différences et/ou leurs points communs fondamentaux. Si les expériences visant à détecter la présence de vie à la surface de Mars, au cœur de la mission, ne donnent aucune réponse décisive (trois expériences ont fourni des résultats négatifs et une des résultats pouvant être interprétée comme positive), elles permettent toutefois de mettre en évidence une chimie du sol inattendue.

Parmi les résultats les plus spectaculaires des missions Viking figurent les premières images prises à la surface de Mars. Les sites d’atterrissage avaient été choisis pour réduire au maximum les risques et offraient des vues peu spectaculaires constituées d’étendues de sable faiblement ondulées et parsemées de rochers. Mais ces images panoramiques de bonne qualité permettaient pour la première fois d’imaginer ce que des hommes se posant à la surface de Mars pourraient ressentir et constituaient les premières images à l’échelle humaine d’une autre planète.

Les instruments utilisés pour détecter la présence de vie dans des prélèvements de sol martien fournirent des résultats ambigus. Dans un premier temps, les résultats de Viking 1 furent estimés positifs par les chercheurs américains de Pasadena, car les expériences d’incubation en présence de vapeur d’eau ou de milieu nutritif montrèrent un dégagement d’oxygène et de dioxyde de carbone, dégagements qui étaient les conditions fixées pour affirmer que la vie avait bien été détectée. Mais ces dégagement à un taux élevé et inattendu décrurent rapidement et cessèrent au bout de 40 heures pour le dioxyde de carbone, phénomènes non observés sur Terre avec des organismes vivants. Ces dégagements sont difficilement explicables, et trop abondants et trop rapides pour être d’origine biologique. Une troisième expérience mit en présence un échantillon de sol dans du gaz carbonique radioactif sous une lampe simulant le Soleil ; du gaz carbonique fut absorbé, comme l’aurait fait une assimilation chlorophyllienne. Enfin, l’analyse chimique d’un échantillon du sol par un spectromètre de masse ne décela aucun composé organique et montra du fer, du calcium, de l’aluminium, du silicium et du titane, tandis que le vanadium et le molybdène étaient absents. La plupart des scientifiques furent convaincus que les résultats observés étaient le fruit de réactions chimiques de nature non biologique, créées par les conditions particulières d’oxydation du sol sur Mars.

Les instruments de l’atterrisseur activés durant la rentrée atmosphérique ont permis d’effectuer les premières mesures in situ de l’atmosphère martienne. Le spectromètre de masse a en particulier fait l’inventaire des éléments présents ainsi que des isotopes. L’instrument a découvert la présence de molécules d’azote (N2 : 2,7%) et déterminé le taux réel d’argon (40Ar) beaucoup moins important que celui rapporté par la mission soviétique Mars 6. L’instrument a également effectué les premières mesures des isotopes de l’azote (14N et 16N). Arrivé au sol, l’instrument GCMS a mesuré de nouveau les taux d’azote et d’argon et obtenu des résultats cohérents avec ceux mesurés durant la rentrée atmosphérique. Le GCMS a mesuré la proportion des isotopes du carbone (12C et 13C) , de l’oxygène (16O et 18O), de l’azote (14N et 15N), de l’argon (36Ar et 39Ar), du néon, du krypton, et du xénon (129Xe et 132Xe) ainsi que des molécules de dioxyde de carbone (CO2), de monoxyde de carbone (CO) et d’oxygène (O2).

Des nuages ont été observés par Viking 2, tourbillonnant sous l’effet de vents à plus de 200 km/h. Des phénomènes de brume matinales vite dissipées par le lever du Soleil ont aussi été observés.

Les caméras VIS des orbiteurs ont pris 52 000 photos de la surface de Mars avec une résolution spatiale comprise entre 100 et 150 mètres soit un nombre dix fois supérieur à celui des photos prises par les caméras de Mariner 9. Certaines des zones ont même été photographiées avec une résolution de 8 mètres. Ces photos ont été utilisées pour définir les caractéristiques des sites d’atterrissage retenus pour les atterrisseurs. Elles ont été utilisées pour réaliser le premier atlas photagraphique couvrant l’ensemble de la planète. Elles ont également permis de mesurer les caractéristiques topographiques, photométriques et colorimétriques de la surface de Mars et d’étudier de manière détaillée un grand nombre de caractéristiques géologiques dont les volcans, les cratères d’impact, les canyons, les canaux, les failles, la formation des calottes polaires, etc. Ces photos ont mis en évidence les formations géologiques créées par le vent et ont rassemblé de nombreux témoignages de la présence d’eau à l’état liquide en surface. La mission Viking a également permis de fournir les premières photographies détaillées des deux satellites orbitant autour de la planète, Phobos et Déimos.

Le programme Viking est un succès total à la fois sur le plan technique et scientifique.

D’un point de vue technique les deux orbiteurs et les deux atterrisseurs ainsi que leurs instruments ont fonctionné de manière nominale. Malgré la complexité d’un atterrissage en douceur à la surface de la planète Mars jamais tenté jusque là, les deux atterrisseurs Viking se sont posés sans aucun dommage validant une série de technologies (bouclier thermique, parachute, rétrofusées, contrôle d’attitude, …) qui seront réutilisées par les missions martiennes de la NASA au cours des décennies suivantes. La durée de fonctionnement des orbiteurs a largement dépassé ce qui était prévu : l’orbiteur Viking 1 a fonctionné durant six ans et celui de la mission Viking 2 durant quatre ans.

Sur le plan scientifique les missions martiennes qui avaient précédé n’avaient donné qu’un aperçu très partiel des caractéristiques et de l’histoire de la planète. Les missions Viking ont fourni pour la première fois Durant tout ce temps, la quantité de données transmises est colossale. Les atterrisseurs analysent en effet la composition de l’atmosphère et du sol martiens et collectent des données météorologiques sur plus de trois années martiennes (six années terrestres). Les orbiteurs, quant à eux, photographient la quasi-totalité de la planète avec une résolution inférieure à 300 mètres par pixel et notent les importantes variations de pression atmosphérique liées au cycle du dioxyde de carbone. Au sol comme depuis les orbites, l’observation détaillée met en évidence la présence passée d’eau liquide à sa surface, relançant ainsi la question de la vie sur la « planète rouge ». Enfin, face aux échecs successifs des Soviétiques, les missions Viking démontrent la supériorité des Américains dans le domaine technologique.

Source : Wikipédia.

Laisser un commentaire

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur comment les données de vos commentaires sont utilisées.