Christian Huygens, mathématicien, astronome et physicien.

Christian Huygens, né le 14 avril 1629 à La Haye (dans les Provinces-Unies) et mort le 8 juillet 1695 dans la même ville, est un mathématicien, un astronome et un physicien néerlandais.

Considéré comme un alter-ego de Galilée, notamment pour sa découverte de Titan qu’il décrit dans Le Système de Saturne (1659) où il fait une première description exhaustive du Système solaire à six planètes et à six lunes, avec une précision alors inégalée. Pour la première fois, il est possible d’avoir une idée de la dimension du système, de l’éloignement des étoilesn 2 et de la position exacte de la Terre en son sein, ainsi que de sa dimension exacte, nettement plus grande que Mars ou Mercure, à peine plus grande que Vénus mais nettement plus petite que Jupiter et Saturne. Il construit également la première horloge à pendule, qui améliorait la précision des horloges existantes de 15 minutes à 15 secondes par jour (1656). Huygens est généralement crédité pour son rôle fondamental dans le développement du calcul moderne, en particulier pour avoir développé les techniques de sommation et d’intégration nécessaires à la découverte de l’isochronisme de la cycloïde. En sciences physiques, il est célèbre pour la formulation de la théorie ondulatoire de la lumière3 et le calcul de la force centrifuge.


Huygens, carte maximum, Pays-bas, 2009.

À la fin du mois d’octobre 1652, Huygens avoue à Frans Van Schooten « La dioptrique m’absorbe entièrement ». Il veut réaliser le télescope dont rêvait Descartes, mais avec des verres que les artisans savent fabriquer. Il est le premier à appliquer la loi de Snell pour calculer la distance focale avec exactitude, ainsi que le grossissement de toute lentille sphérique, et il sait déterminer la taille, la position et l’orientation des images. Il réalise l’ambition de Johannes Kepler de réduire la dioptrique à un problème mathématique. Il achève en deux ans le premier avant-projet de traité dans lequel il expose, en une centaine de pages et par suite de propositions enchaînées, son interprétation mathématique de la dioptrique. En 1654, avec l’aide de son frère Constantin , il entreprend de tailler lui-même ses objectifs et ses oculaires. En mars 1655, les frères Huygens achèvent le montage de leur premier télescope. Christian observe d’abord la Lune et scrute ensuite les environs de Mars et Vénus, à la recherche de nouveaux satellites. Le premier de ses croquis de Saturne date du 25 mars 1655 ; cette nuit-là, il distingue un point brillant près de la planète et suit son évolution les nuits suivantes. Au bout de seize jours, le point est revenu à sa position initiale. Il avait observé ce qui sera nommé plus tard Titan, le premier et le plus grand satellite observé de Saturne. La chance a été de son côté, en effet, il l’a observé au moment où l’anneau était sur le point de se cacher.

Il examine également les anneaux de Saturne et établit qu’il s’agit bien d’un anneau entourant la planète. Dans une lettre datée du 8 février 1656, il se vante d’avoir trouvé la cause de ce qui était pris pour des « oreilles » de Saturne par Galilée. En mars 1656, il publie De Saturni luna observatio nova (Nouvelles observations d’une lune de Saturne), un opuscule de deux pages prédisant que les “oreilles” réapparaîtraient en avril de cette même année, et invitant les scientifiques à présenter une explication apte à rivaliser avec la sienne. Il n’édite son explication qu’à l’été 1659, dans son traité Systemia Saturnium où est écrit à propos de Saturne : « Il est entouré d’un anneau plat et mince, qui ne le touche en aucun point et qui est incliné par rapport à l’écliptique ».

Malgré ce que le titre du traité laisse entendre, il ne concerne pas uniquement Saturne. Huygens est le premier à observer des traits à la surface de Mars, et en suivant le déplacement de la tache de Syrtis Major — une vaste région de roche volcanique —, il remarque que la planète tourne autour d’un axe et peut même établir la durée de la journée martienne. Il fait aussi de nouvelles observations sur Jupiter et sur la nébuleuse d’Orion, découverte par Peiresc en 1610, où il aperçoit trois des étoiles qui forment en son centre l’amas du trapèze. Il équipe son télescope d’un micromètre à fils perfectionné — inventé en 1640 par l’astronome amateur William Gascoigne —, qui lui permet de mesurer précisément le diamètre angulaire des objets célestes et d’en apprécier le diamètre rapporté au diamètre terrestre, connu avec une bonne approximation à l’époque. Sur une base fragile, il obtient que le diamètre du Soleil est 111 fois plus grand que celui de la Terre (le chiffre correct est 109).

Après la publication du Systema Saturnium, Huygens est toujours décidé à mettre au point le télescope parfait. À partir de 1665, il investit beaucoup d’énergie à éliminer l’aberration sphérique, ses efforts aboutissent le 1er février 1669. Au lieu d’agir sur l’oculaire, il préfère doubler les lentilles de l’objectif. Le système formé d’une lentille biconcave et d’une autre plan-convexe se comporte comme un objectif hyperbolique sans aberration sphérique. Le modèle porte son sceau : c’est un mariage réussi de physique et de géométrie, où la matière corrige ses défauts en suivant des instructions mathématiques. Il doit bientôt déchanter : il lit l’article publié par Newton dans la revue Philosophical Transactions of the Royal Society où l’auteur met en doute l’avenir du télescope à réfraction, qui ne corrige pas (pas encore) l’aberration chromatique. La mort dans l’âme, il remplace le mot Eurêka écrit en date du 1er février 1669 par « Cette invention est inutile à cause de l’aberration newtonienne qui produit des couleurs ». Ce demi-échec le conduira à des recherches sur la nature de la lumière. Il découvre aussi quelques nébuleuses et quelques étoiles doubles.

C’est dans le domaine de la géométrie que Huygens fait ses premières découvertes, dans une branche comme les quadratures. À 22 ans, il détecte une erreur dans les résultats obtenus par le jésuite flamand Grégoire de Saint-Vincent et perfectionne une méthode de ce dernier pour créer des quadratures, et l’appliquer aux sections coniques (ellipses, hyperboles et paraboles). À partir d’une quadrature du cercle faite par approximation, il améliore la méthode d’Archimède du calcul des décimales de π.

Après avoir entendu parler de la correspondance de Blaise Pascal et Pierre de Fermat au sujet du problème des partis lors de son premier voyage à Paris en 1655, Huygens, encouragé par Frans Van Schooten, publie le premier livre sur le calcul des probabilités dans les jeux de hasard en 1657. Il y introduit comme notion fondamentale la « valeur de l’espérance » d’une situation d’incertitude. Ce livre, qu’il traduit en néerlandais en 1660, va jouer un rôle déterminant dans la diffusion de cette nouvelle mathématique ; il est repris en anglais (anonymement) par John Arbuthnot en 169232, en latin par Juan Caramuel y Lobkowitz en 1670, et de manière décisive par Jacques Bernoulli dans la première partie de son Ars conjectandi publié en 1715.

Il s’est opposé à Leibniz, à la fin de sa vie, dans la mesure où il lui semble que le calcul infinitésimal n’est au fond qu’une affaire de langage, la géométrie devant seule intervenir dans la mise en forme mathématique des phénomènes. Après l’avoir assimilé, il n’en voit pas l’intérêt, car il est capable, avec ses magnifiques développements géométriques, de résoudre n’importe quel problème que Leibniz lui soumet pour démontrer la supériorité de son calcul. Dans sa réponse à une lettre du marquis de l’Hospital qui débattait de la même question, il commente « Je ne vois pas en quoi la méthode de calcul de Monsieur Leibniz serait nécessaire dans ce domaine et je ne crois pas non plus qu’elle soit aussi utile qu’il semble l’affirmer ». Le développement du calcul infinitésimal à la fin de sa vie lui montrera tout de même, comme le révèle sa correspondance avec Leibniz et le marquis, la puissance de cet outil.

La curiosité hyperactive de Huygens le pousse à travailler sur plusieurs fronts à la fois. Il passe de l’un à l’autre au gré de ses envies ou des pressions de son entourage. Ses recherches peuvent avancer ou stagner, progresser de front ou se retarder mutuellement. Deux élan contradictoires finissent par le paralyser : sa répugnance à considérer un projet et sa propension à s’engager constamment dans de nouvelles recherches.

Voir aussi cette vidéo :

Sources : Wikipédia, YouTube.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur comment les données de vos commentaires sont utilisées.