Apollo 16.

Apollo 16 est une mission habitée du programme Apollo ayant eu lieu du 16 au 27 avril 1972 et au cours de laquelle deux des membres de l’équipage se sont posés sur la Lune et ont exploré la zone située près de leur site d’atterrissage. Il s’agit de la dixième mission Apollo ainsi que la cinquième et avant-dernière comprenant un séjour sur la Lune. Apollo 16 est la première mission à se poser sur de hauts plateaux lunaires, en l’occurrence dans la région du cratère Descartes. Il s’agit également de la seconde mission Apollo de type J, qui se caractérise par des objectifs scientifiques étendus et un séjour sur la surface lunaire prolongé à trois jours grâce à une version évoluée du module lunaire. L’équipage d’Apollo 16 est composé de John Young, commandant, de Charles Duke copilote du module lunaire et de Ken Mattingly pilote du module de commande. Lancé depuis le centre spatial Kennedy en Floride le 16 avril 1972 à 17h54 TU, le vaisseau Apollo amerrit le 27 avril à 19h45 TU après un séjour dans l’espace de 11 jours, 1 heure et 15 minutes.

John Young et Charles Duke séjournent 71 heures à la surface de la Lune, au cours desquelles ils réalisent trois sorties extravéhiculaires (EVA) d’une durée totale de 20 heures et 41 minutes. Durant ces sorties, ils utilisent un rover lunaire avec lequel ils parcourent une distance de 26,7 kilomètres. Les deux astronautes collectent 95,8 kilogrammes d’échantillons de roches lunaires qui seront rapportés sur Terre tandis que Ken Mattingly, resté en orbite, réalise des observations scientifiques. Après le retour de Young et Duke en orbite lunaire, un mini-satellite scientifique est déployé à partir du module de service. Durant le voyage de retour, Mattingly récupère les films des caméras du module de service au cours d’une sortie extravéhiculaire.

Trois des quatre premiers atterrissages du programme Apollo s’étaient déroulés dans des mers lunaires et le quatrième à proximité de la mer des Pluies. Par conséquent, la priorité pour cette mission était de collecter des échantillons des hauts plateaux datant théoriquement d’une période antérieure à l’impact météoritique à l’origine de la mer des Pluies. Le site retenu était situé près des formations géologiques Descartes et Cayley qui, avant la mission, étaient considérés par les géologues comme des formations d’origine volcanique. Mais les échantillons rapportés par les astronautes démontrèrent que cette hypothèse était erronée.


L’équipage de la mission Apollo 16 comprend les trois astronautes suivants :

  • John W. Young, commandant de la mission, 4e vol spatial ;
  • Thomas K. Mattingly II, pilote du module de commande, 1er vol dans l’espace ;
  • Charles M. Duke Jr, pilote du module lunaire, 1er et seul vol dans l’espace.

Ken Mattingly devait faire partie de l’équipage d’Apollo 13 mais ayant été en contact avec Charles Duke, membre de l’équipage de remplacement d’Apollo 13 qui souffrait de la rougeole, il avait dû laisser sa place à Jack Swigert deux jours avant le lancement. John Young, capitaine dans la Marine américaine est un vétéran qui a déjà participé à trois missions : Gemini 3, Gemini 10 et Apollo 10, au cours de laquelle son vaisseau s’est placé en orbite autour de la Lune. Charles Duke fait partie de la promotion d’astronautes recrutée par la NASA en 1966 et Apollo 16 est sa première mission dans l’espace. Il a néanmoins déjà été Capcom pour la mission Apollo 11 ainsi que membre de l’équipage de réserve d’Apollo 13.

L’équipage de remplacement de la mission Apollo 16 constitue une réserve d’astronautes ayant suivi le même entrainement que l’équipage titulaire et à même de remplacer celui-ci en cas de défaillance (maladie ou risque de maladie, accident…). Les trois astronautes de l’équipage de remplacement sont :

  • Fred W. Haise, Jr., commandant ;
  • Stuart A. Roosa, pilote du module de commande ;
  • Edgar D. Mitchell, copilote du module lunaire.

L’équipage de remplacement avait une composition initiale différente connue bien que non officielle. Il comprenait Fred Haise (commandant), William R. Pogue (pilote du module de commande) et Gerald Carr (copilote du module lunaire). Mais après l’annulation des missions Apollo 18 et 19 en septembre 1970 pour des raisons budgétaires, le plan d’affectation des équipages dut être modifié : Roosa et Mitchell furent désignés pour faire partie de l’équipage de remplacement tandis que Pogue et Carr se retrouvaient assignés au programme de la station spatiale Skylab. Ils participèrent effectivement à la mission Skylab 4.

Durant la mission l’équipage est en communication quasi permanente avec le contrôle au sol. Un astronaute, le CapCom (Capsule communicators ou capcoms) assure l’interface entre les astronautes en vol et les spécialistes au sol. Dans le cas d’Apollo 16 les capcoms qui se relaient sont: Anthony W. England, Karl G. Henize, Henry W. Hartsfield, Jr, Robert F. Overmyer, Donald H. Peterson, C. Gordon Fullerton, Edgar Mitchell, James Irwin, Fred Haise et Stuart Roosa.

L’insigne de la mission Apollo 16 représente un pygargue à tête blanche perché sur un blason rouge, bleu et blanc, représentant le peuple américain. En arrière-plan un fond gris représentant la surface de la Lune tandis que le symbole de la NASA, une aile stylisée et dorée, barre la surface lunaire. Sur le pourtour de l’insigne figurent seize étoiles symbolisant le numéro de la mission et les patronymes des membres de l’équipage : Young, Mattingly, Duke. La bordure bleue contenant les noms et les étoiles est soulignée d’or. Cet insigne a été dessiné sur la base de suggestions émises par l’équipage.

Apollo 16 est la deuxième mission Apollo de type J, axée sur les travaux scientifiques. Elle dispose d’un module lunaire plus lourd permettant un séjour de 3 jours à la surface de la Lune et capable de transporter un Lunar Roving Vehicle. Avant-dernière mission du programme Apollo, elle bénéficie, tout comme Apollo 17, du savoir-faire engrangé durant les missions précédentes et il n’est donc plus nécessaire d’incorporer dans le programme des tests de nouvelles procédures ou de nouveaux matériels. Ces deux dernières missions fournissent l’opportunité pour les astronautes de tenter de découvrir les raisons de certaines caractéristiques de la Lune mal expliquées. Bien que les missions précédentes, Apollo 14 et Apollo 15, aient ramené sur Terre des roches lunaires datant d’avant la formation des mers lunaires, c’est-à-dire d’avant les remontées du magma ayant noyé les parties les plus basses de la géographie lunaire, aucun de ces matériaux ne provient de hauts plateaux.

La mission Apollo 14 a permis d’obtenir des échantillons de roches issues des couches supérieures éjectées lors de l’impact de météorites ayant formé la mer des Pluies. L’équipage d’Apollo 15 a de son côté trouvé des roches ayant la même origine en visitant les montagnes situées sur le pourtour de la mer des Pluies. En raison de la proximité des deux sites d’atterrissage, il était concevable que, dans des régions plus éloignées de la mer des Pluies, d’autres processus géologiques aient été à l’œuvre donnant naissance à d’autres types de terrain. Certains membres de la communauté scientifique, remarquant que les régions centrales des hauts plateaux lunaires présentaient une apparence similaire à des régions de la Terre créées par des activités volcaniques, supposèrent alors qu’il en était peut-être de même sur la Lune. L’objectif scientifique d’Apollo 16 est de confirmer cette théorie.

Deux sites d’atterrissage sont placés en tête des priorités pour Apollo 16 : les hauts plateaux situés à proximité du cratère Descartes à l’ouest de la mer des Nectars et le cratère Alphonsus. Dans la région des hauts plateaux de Descartes, les formations des cratères Descartes et Cayley constituent les objectifs les plus intéressants car les scientifiques supposaient, sur la base d’observations réalisées depuis la Terre et depuis l’orbite lunaire, que le terrain dans cette région avait été formé par un magma plus visqueux que celui des mers lunaires. L’âge de la formation Cayley semblait proche de celui de la mer des Pluies d’après la densité des impacts météoritiques observée dans ces deux régions. La distance importante entre ce site pour Apollo 16 et les sites des atterrissages des missions précédentes est un argument en faveur du site Descartes car il étend considérablement la taille du réseau d’instruments géophysiques installés par chacune des missions Apollo (à l’exception d’Apollo 11).

En ce qui concerne le site du cratère Alphonsus, trois objectifs scientifiques de grande importance sont identifiés : la recherche sur la face interne des rebords du cratère de roches datant d’avant la formation de la mer des Pluies, la détermination de la composition des terrains situés à l’intérieur du cratère et enfin la présence potentielle d’anciennes activités volcaniques sur le plancher du cratère situé au niveau de petits cratères présentant un halo sombre. Les géologues redoutent cependant que les échantillons de cette zone ne soient contaminés par des matériaux éjectés lors de la formation de la mer des Pluies, ce qui interdirait la découverte de matériaux plus anciens. À cela s’ajoute la crainte de réaliser une mission redondante par rapport aux missions Apollo 14 et 15 dont les échantillons sont en cours d’analyse pour la première et encore indisponibles pour la seconde.

Pour toutes ces raisons, la région du cratère Descartes est retenue comme destination. À la suite de cette décision, le cratère Alphonsus est classé comme site prioritaire pour la mission Apollo 17. Il sera cependant finalement éliminé. Des photographies prises par la mission Apollo 14 sont utilisées pour s’assurer que les caractéristiques du site de Descartes permettent un atterrissage du module lunaire. Le site retenu pour la mission se situe entre deux cratères d’impact récents (les cratères « Ray » -« Rayon »- nord et sud), respectivement de 1000 et 680 mètres de diamètre, qui constituent des forages naturels à travers la couche de régolite et permettent ainsi aux astronautes d’accéder au socle rocheux.

Après avoir sélectionné le site d’atterrissage de la mission, les planificateurs déterminèrent que la collecte d’échantillons de roches issues des formations géologiques Cayley et Descartes constituaient les objectifs prioritaires des sorties extravéhiculaires que devraient effectuer les astronautes. Ce sont ces formations particulières que la communauté scientifique suspecte alors d’avoir été créées par une activité volcanique ; l’analyse des échantillons prélevés par l’équipage d’Apollo 16 prouvera que cette théorie était fausse23.

Durant la préparation à leur mission, les astronautes d’Apollo 16 suivent un entraînement très varié qui comprend, entre autres, plusieurs excursions géologiques dont l’objectif est de familiariser les astronautes avec les concepts et techniques qui leur seront nécessaires à la surface de la Lune. Durant ces excursions, les astronautes étudient et apprennent à reconnaître les formations géologiques qu’ils risquent de rencontrer sur la Lune. En juillet 1971, les astronautes d’Apollo 16 effectuent une excursion géologique à Grand Sudbury en Ontario (Canada). Les géologues ont choisi cette région car elle comprend un cratère de 97 kilomètres de large formé il y a environ 1,6 million d’années par l’impact d’une importante météorite. Durant ces exercices, les astronautes ne portent pas de scaphandres mais utilisent une radio pour communiquer entre eux ainsi qu’avec un astronaute scientifique tout en répétant les procédures utilisées plus tard sur la Lune.

À ces entraînements géologiques s’ajoutent les préparatifs suivis habituellement par les astronautes avant toute mission comme l’entraînement à l’utilisation des scaphandres spatiaux, des séances destinées à les préparer à la gravité lunaire, des entraînements à l’atterrissage. Ils s’entraînent également à la collecte d’échantillons de roches, à la conduite du rover lunaire ; ils effectuent des entraînements de survie en milieu hostile et se préparent aux différents aspects techniques de la mission.

Le lancement d’Apollo 16 est le premier des vols Apollo à ne pas respecter le calendrier prévu. La mission, dont le décollage était planifié le 17 mars, est lancée le 16 avril 1972. Ce report est dû à des anomalies touchant les combinaisons spatiales de l’équipage, le mécanisme de séparation du vaisseau Apollo et les batteries du module lunaire. Au cours des préparatifs de la mission, les ingénieurs se rendent compte que le dispositif pyrotechnique chargé de la séparation du module de commande et du module de service peu avant la rentrée atmosphérique ne produirait peut-être pas assez de pression pour remplir son rôle. Ce problème ajouté à la nécessité de revoir la combinaison spatiale de John Young et des fluctuations de puissance électrique dans le module lunaire conduit la NASA à remplacer le matériel défaillant et repousser le vol. Déjà en janvier 1972, soit trois mois avant la date initiale de lancement, un réservoir de carburant du module de commande avait été endommagé accidentellement. Le lanceur avait dû être ramené au Vehicle Assembly Building. Le réservoir avait été remplacé puis le lanceur avait été ramené sur le pas de tir en février de la même année, à temps pour le lancement alors encore prévu en mars.

Le compte à rebours de la mission démarre le lundi 10 avril 1972 à huit heures trente du matin, soit six jours avant le lancement. À ce stade des préparatifs de la mission, le lanceur tri-étage Saturn V est mis sous tension et les réservoirs d’eau potable du module de commande sont remplis. Au même moment, les membres de l’équipage participent aux derniers entraînements et exercices. Le 11 avril, les astronautes passent un dernier examen médical. Le 15 avril, les réservoirs d’oxygène et d’hydrogène liquides du vaisseau sont remplis tandis que les astronautes prennent un dernier repos avant le lancement.

Le 16 avril 1972 à 17h54 UT (12h54 local), le lanceur Saturn V transportant le vaisseau Apollo 16 s’élance du pas de tir du centre spatial Kennedy en Floride. Le lancement se déroule de manière nominale ; le niveau de vibration ressenti par l’équipage est similaire à celui rapporté par les astronautes des missions précédentes. Les premier et second étages fonctionnent de manière nominale et placent en orbite terrestre le vaisseau Apollo et ses trois membres d’équipage en un peu moins de douze minutes. Après cette première phase de lancement, les astronautes consacrent un peu de temps à s’adapter à la micropesanteur puis se consacrent aux préparatifs qui précèdent l’injection sur la trajectoire qui doit les mener en orbite lunaire. Durant ces vérifications, l’équipage fait face à de multiples problèmes techniques mineurs touchant notamment le système de support de vie et le système de contrôle d’attitude du S-IVB, le troisième étage du lanceur chargé de placer le vaisseau sur la trajectoire Terre-Lune. Ces problèmes sont résolus ou contournés. Après avoir bouclé deux orbites terrestres, le troisième étage est mis à feu pendant un peu plus de cinq minutes, propulsant le vaisseau à la vitesse d’environ 35 000 km/h sur la trajectoire qui doit le conduire à la Lune.

Six minutes après la fin de cette phase propulsée, le module de service et de commande, dans lequel se trouve l’équipage, se sépare de la fusée et s’en éloigne de 15 m avant de se retourner pour récupérer le module lunaire toujours solidaire du S-IVB. Cette manœuvre, dite de transposition, se déroule sans rencontrer de problème. Après la manœuvre, l’équipage note que des particules de peinture se détachent de la surface du module lunaire en un point où la coque extérieure semble tordue ou froissée. Charlie Duke estime que cinq à dix particules sont produites par seconde. L’équipage pénètre dans le module lunaire à travers le tunnel d’amarrage qui le relie au module de commande et inspecte les systèmes du vaisseau mais n’y constate rien d’anormal. L’équipage place ensuite le vaisseau en mode « barbecue », c’est-à-dire que le vaisseau tourne sur lui-même à une vitesse de trois rotations par heure pour assurer une distribution égale de la chaleur reçue du Soleil par les parois du vaisseau. Ce mode sera conservé durant tout le voyage de transit vers la Lune. Après avoir effectué quelques tâches de maintenance, l’équipage entame sa première période de sommeil, environ quinze heures après le lancement.

Lorsque le contrôle au sol réveille les astronautes au début du deuxième jour de la mission, le vaisseau se trouve à une distance d’environ 181 000 km de la Terre et voyage à une vitesse de 1 622 m/s. L’arrivée en orbite lunaire doit avoir lieu le quatrième jour et les deux journées qui précèdent sont essentiellement consacrées aux préparatifs d’arrivée et à des expériences scientifiques en micropesanteur. Au cours du deuxième jour de vol, l’équipage réalise ainsi une expérience d’électrophorèse, qui avait déjà été réalisée durant la mission Apollo 14 : les astronautes tentent de démontrer la plus grande pureté du processus de migration des particules dans un environnement de micropesanteur. Une partie de la journée est également consacrée à la préparation et à l’exécution d’une petite correction de trajectoire qui se traduit par une poussée de deux secondes effectuée à l’aide de la propulsion principale du module de commande et de service. Plus tard dans la journée, les astronautes pénètrent une deuxième fois dans le module lunaire pour une inspection plus poussée de ses systèmes. L’équipage rapporte alors que des écailles de peinture continuent de se détacher de la peau d’aluminium du module lunaire. Malgré cette anomalie, l’équipage confirme que tous les systèmes à bord du module fonctionnent normalement. Après cette inspection, l’équipage revoit les procédures d’insertion en orbite lunaire. Le pilote du module de commande, Ken Mattingly, signale un blocage de cardan qu’il corrige en réalignant le système de navigation après avoir effectué un relevé de la position de la Lune et du Soleil. Habitué à enlever son alliance pour se laver, il l’égare et celle-ci ne fut pas retrouvée malgré les recherches de l’équipage. À la fin de cette deuxième journée, Apollo 16 se trouve à 260 000 km de la Terre.

Au début de la troisième journée, le vaisseau se trouve à 291 000 km de la Terre. La vitesse du vaisseau baisse régulièrement alors que le vaisseau s’approche de la frontière entre les sphères d’influence gravitationnelle de la Lune et de la Terre. La première partie de la journée est consacrée à des opérations de maintenance ainsi qu’à des rapports au centre de contrôle. L’équipage réalise ensuite une expérience scientifique sur les flashs lumineux (ALFMED), dont l’objectif est de comprendre l’origine de ces phénomènes observés par les astronautes au cours des missions précédentes alors qu’ils se trouvaient dans le noir, yeux fermés ou non. L’hypothèse à confirmer est que les flashs sont produits par l’impact de rayons cosmiques sur la rétine. Durant la deuxième partie de la journée, John Young et Charlie Duke entrent à nouveau dans le module lunaire pour le mettre sous tension et vérifier ses systèmes tout en réalisant certaines tâches en vue de l’atterrissage sur la Lune. Tous les systèmes du module sont considérés comme opérationnels. Les astronautes enfilent alors leurs combinaisons spatiales pour un dernier entraînement à la procédure d’injection en orbite lunaire. À la fin de la troisième journée de voyage, 59 heures, 19 minutes et 45 secondes après le lancement, le vaisseau se trouve à 330 902 km de distance de la Terre et à 62 636 km de la Lune, le vaisseau recommence à prendre de la vitesse alors qu’il entre dans la sphère d’influence de la Lune.

Après leur réveil au début du quatrième jour de la mission, l’équipage prépare la manœuvre d’insertion en orbite lunaire. Alors que le vaisseau se trouve encore à 20 635 km de la Lune, le panneau qui recouvre la baie du module de service contenant les instruments scientifiques est éjecté. 74 heures après le lancement, le vaisseau Apollo 16 passe derrière la Lune, perdant tout contact radio avec le contrôle au sol. Pendant leur vol au-dessus de la face cachée de la Lune, le moteur du module de commande est mis à feu pour une durée de six minutes et quinze secondes, freinant le vaisseau ce qui le place sur une orbite elliptique dont le périgée est de 108 km et l’apogée de 315,6 km. Cette manœuvre achevée, les trois astronautes préparent le changement d’orbite qui doit abaisser le périgée à 19,8 km d’altitude pour réduire la distance à parcourir par le module lunaire chargé d’atterrir à la surface de la Lune. Le reste de la journée est consacré à l’observation de la Lune et à l’activation du module lunaire en prévision de sa séparation et de son atterrissage le jour suivant.

Au début du cinquième jour de mission, les trois astronautes, qui ont été réveillés par le centre de contrôle à Houston, préparent l’activation du module lunaire et son désamarrage. Le bras télescopique sur lequel est fixé le spectromètre de masse et qui est fixé sur le flanc de la baie scientifique du module de commande et de service reste coincé en position semi-rétractée. Il est décidé de faire inspecter le mécanisme fautif par Young et Duke depuis le module lunaire. Les deux astronautes pénètrent dans celui-ci pour l’activer et vérifier l’ensemble de ses systèmes. Bien que débutées avec quarante minutes en avance, ces tâches ne sont achevées qu’avec dix minutes d’avance. À l’issue de ces vérifications, Young et Duke à bord d’Orion (nom de baptême retenu pour les échanges radio) se séparent du module de commande (baptisé Casper) 96 heures, 13 minutes et 13 secondes après le début de la mission. Au cours de l’orbite suivante, Mattingly effectue les préparatifs pour la manœuvre de circularisation de l’orbite de Casper tandis qu’Young et Duke préparent la descente d’Orion vers la surface de la Lune. Au cours de ses vérifications, Mattingly détecte une anomalie (des oscillations) dans le système utilisé en secours qui permet d’orienter le propulseur principal. C’est une anomalie majeure et les règles de mission indiquent que, dans un tel cas, la mission doit être interrompue et que Orion doit revenir s’amarrer à Casper si le contrôle au sol décide d’utiliser le moteur de descente du module lunaire pour entamer le retour vers la Terre (dans la perspective où la propulsion principale du module de Commande et de Service serait défaillante). Informé, l’équipage d’Orion reporte la descente vers le sol lunaire tandis que les contrôleurs au sol analysent durant plusieurs heures la situation avant de conclure que l’anomalie peut être contournée et que l’atterrissage peut donc avoir lieu. En raison de ce problème, la descente vers la Lune débute avec environ six heures de retard. Une autre conséquence est que l’altitude du module lunaire au début de descente est d’environ 20 km, beaucoup plus importante que prévu, la plus importante de toutes les missions lunaires ayant déjà eu lieu. À 4 km d’altitude, Young parvient à identifier le site d’atterrissage. La baisse de la poussée du moteur du module lunaire intervient à l’heure prévue et le changement d’orientation qui précède la phase finale de l’atterrissage intervient à une altitude de 2 200 m. Le module lunaire Orion atterrit sur le sol lunaire le 21 avril à 2 h 23 min 35 s UTC et 104 heures, 29 minutes et 35 secondes après son lancement. La précision est remarquable, le module se trouve à 270 m au nord et 60 m à l’est du point visé.

Après l’atterrissage, les deux astronautes éteignent certains systèmes du module lunaire pour économiser les batteries. Young et Duke reconfigurent ensuite le module pour son séjour de trois jours sur le sol lunaire, retirent leurs combinaisons spatiales et font des premières observations géologiques du site d’atterrissage à travers les hublots. Ils prennent leur premier repas lunaire puis préparent l’habitacle pour leur première période de sommeil sur la Lune. Le retard accumulé avant l’atterrissage entraine des modifications dans le planning des opérations suivantes. Il est prévu à l’issue du séjour en surface que la mission Apollo 16 séjourne en orbite un jour de moins que prévu pour pouvoir faire face à des impondérables et conserver des marges de sécurité au niveau des consommables. Pour accroître le temps de sommeil de l’équipage, la troisième et dernière sortie sur le sol lunaire est réduite de sept à cinq heures.

Huit minutes avant l’heure prévue pour le décollage du sol lunaire, James Irwin, chargé des communications avec l’équipage au centre de contrôle de Houston, informe Young et Duke que le contrôle au sol donne son feu vert. Deux minutes avant le lancement, les astronautes arment le système de mise à feu du moteur de l’étage de remontée ainsi que le système d’annulation d’urgence. Ils attendent alors le déclenchement automatique de l’allumage du moteur de remontée. Juste avant celui-ci, des boulons explosifs séparent l’étage de remontée de l’étage de descente et les connexions électriques sont coupées par un système de guillotine. Six minutes après le décollage, le module lunaire qui a accéléré à une vitesse d’environ 5 000 km/h, s’insère sur l’orbite lunaire visée. Les deux astronautes effectuent alors la manœuvre de rendez-vous et s’amarrent, sans rencontrer de problème, au module de commande où se trouve Ken Mattingly resté en orbite. Pour réduire la quantité de poussière lunaire susceptible d’être introduite dans le module de commande, Young et Duke nettoient d’abord la cabine du module lunaire avant d’ouvrir l’écoutille qui les sépare de leur collègue. Après les retrouvailles avec Ken Mattingly, l’équipage transfère dans le module de commande les échantillons de roche lunaire qu’Young et Duke ont collectés à la surface de la Lune. Une fois cette tâche réalisée et contrairement à ce qui était planifié, le contrôle au sol demande à l’équipage de prendre du repos, repoussant au lendemain le largage du module lunaire.

Le lendemain, après des dernières vérifications, le module lunaire est largué. Mais l’équipage a oublié de basculer un interrupteur dans le module lunaire et celui-ci se met à tournoyer sur lui-même après la séparation. Il était prévu que le moteur du module lunaire soit mis à feu pour le désorbiter et le lancer sur une trajectoire de collision avec la Lune en un lieu choisi de manière précise. Cette manœuvre est devenue impossible et le module lunaire s’écrasera finalement sur le sol lunaire un an plus tard de manière incontrôlée. La tâche suivante de l’équipage est de larguer un mini satellite scientifique de 36,3 kg. Il est lancé le 24 avril 1972 à 21 h 56 min 9 s UTC et orbitera autour de la Lune 34 jours en effectuant 425 révolutions. Mais l’orbite sur laquelle circule le satellite n’est pas celle prévue initialement. En effet, le contrôle au sol ne veut pas solliciter le moteur SPS, qui a rencontré des problèmes au moment de l’insertion en orbite lunaire. En conséquence, sur l’orbite retenue, le temps de vie du satellite est diminué de moitié. Après un peu moins de cinq heures d’attente et de préparations, le moteur SPS du module de commande est mis à feu lors de la 65e orbite pour entamer le retour vers la Terre. Malgré les problèmes rencontrés quelques jours auparavant, le moteur fonctionne à la perfection.

Alors qu’il se trouve à environ 310 000 km de la Terre, Ken Mattingly, le pilote du module de commande, effectue une sortie extravéhiculaire durant laquelle il récupère les films sur cassettes situés dans la baie dédiée aux instruments scientifiques du module de commande et de service. Au même moment, Mattingly réalise une expérience de biologie baptisée « Microbial Ecology Evaluation Device » (MEED – Engin d’évaluation de l’écologie microbienne). L’expérience ne sera pas reconduite sur les missions suivantes.

Alors qu’il observe Mattingly après être rentré dans le module de commande, Charlie Duke est gêné par un reflet doré dans un coin de son champ de vision. Il se retourne et aperçoit l’alliance de son coéquipier, perdue lors du deuxième jour de la mission, flottant librement dans le vide spatial et s’éloignant lentement du vaisseau. Il tente de la saisir, mais n’y parvient pas. L’anneau, tournoyant sur lui-même, continue sa trajectoire rectiligne vers Ken Mattingly et rebondit sur l’arrière de son casque avant de revenir dans l’écoutille au bout de trois minutes, Duke parvenant cette fois à l’attraper quand elle passe devant lui. Une fois la sortie terminée, les astronautes effectuent ensuite plusieurs tâches de maintenance puis prennent un repas qui conclut leur journée de travail.

L’avant-dernier jour de la mission est consacré essentiellement à la réalisation d’expériences scientifiques qui sont seulement interrompues par une conférence de presse de vingt minutes où les astronautes répondent à des questions techniques ou non sur leur mission ; celles-ci ont été préparées par des journalistes accrédités se trouvant au centre spatial de Houston et sont posées selon un ordre de priorité. En plus des nombreuses tâches de maintenance, les astronautes préparent le vaisseau pour la rentrée atmosphérique et leur retour sur Terre qui est prévu pour le lendemain. À la fin de la journée, le vaisseau se trouve à 143 000 km de la Terre et progresse à une vitesse de 2 km/s.

Tony England est chargé de réveiller l’équipage d’Apollo 16 pour leur dernier jour de mission. Le vaisseau se trouve à 83 000 km de la Terre dont il se rapproche à la vitesse de 2,7 km/s. Trois heures avant l’amerrissage dans l’océan Pacifique, l’équipage effectue une dernière correction de trajectoire qui modifie la vitesse du vaisseau de 0,43 m/s. Environ dix minutes avant leur rentrée dans l’atmosphère, le module de service est largué et poursuit sa route qui l’amènera à se consumer. Le vaisseau Apollo 16 entame sa rentrée atmosphérique 265 heures et 37 minutes après son départ de Floride et à une vitesse de 11 km/s. La coque s’échauffe au fur et à mesure que la densité de l’atmosphère croît. À son pic, la température du bouclier thermique qui protège la coque oscille entre 2 204 °C et 2 482 °C. L’ouverture réussie des parachutes principaux intervient moins de quatorze minutes après le début de la rentrée atmosphérique et le vaisseau amerrit dans l’océan Pacifique à 350 km au sud-est de l’île Christmas mettant un terme à une mission qui aura duré 290 heures, 37 minutes et 6 secondes. Le vaisseau et ses trois membres d’équipage sont récupérés par le porte-avion USS Ticonderoga. Young, Duke et Mattingly se retrouvent en sécurité à bord du porte-avion trente-sept minutes après l’amerrissage.

Source : Wikipédia.

Laisser un commentaire

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur comment les données de vos commentaires sont utilisées.